
Optical and Ray Tracing Mathematics
Copyright c© 2014, Paul Lutus

October 9, 2014

Most recent revision June 19, 2017

Abstract
This article describes the mathematical methods used in the OpticalRayTracer optical design tool, as well as

general optical mathematical methods. Because OpticalRayTracer uses ray tracing to accomplish its results, ray
tracing methods and mathematics are also described.

Contents
1 Overview 2

1.1 Ray Tracing . 2
1.2 Snell’s Law . 2

1.2.1 Scalar form . 3
1.2.2 Vector form . 3

1.3 Index of Refraction . 3
1.4 Total Internal Reflection . 4

2 Basic Ray Tracing 5
2.1 Core algorithm . 5
2.2 Circle-line intersection . 6
2.3 Mirror Reflection . 8

2.3.1 Scalar form . 8
2.3.2 Vector form . 8

2.4 Distance from point to line . 9

3 Advanced Topics 9
3.1 Dispersion computation . 10

3.1.1 Abbe number . 10
3.1.2 Sellmeier equation . 10
3.1.3 ORT/Sellmeier comparison . 10

3.2 Hyperbolic Lenses . 11
3.2.1 Advantages of hyperbolic lenses . 11
3.2.2 Parabolic curve option . 12
3.2.3 Conic sections . 13
3.2.4 Modeling challenge . 16
3.2.5 Ellipse-line intersection . 17
3.2.6 Hyperbolic-line intersection . 18
3.2.7 Z coordinate . 18
3.2.8 Hyperbolic model . 20

4 Conclusion 23
4.1 Role of computers in optics . 23
4.2 Tools . 23

4.2.1 SymPy . 24
4.2.2 IPython . 25
4.2.3 Sage . 25
4.2.4 Pov-Ray . 26

1

http://arachnoid.com/administration

List of Figures
1 Index of Refraction . 3
2 Snell’s Law refraction example . 4
3 Total internal reflection . 5
4 Lens defined by overlapping circles . 6
5 Ray intersection diagram . 7
6 Mirror reflection . 8
7 Point-line proximity calculation . 9
8 Dispersion equation comparison . 11
9 Spherical aberration . 11
10 Optimized hyperbolic lens . 12
11 Parabolic mirror . 12
12 Elliptical conic section . 13
13 Circular conic section . 13
14 Parabolic conic section . 14
15 Hyperbolic conic section, z = .5 . 14
16 Hyperbolic conic section (anaglyph), z = .5 . 15
17 Hyperbolic conic section, z = 0 . 15
18 3D orientation diagram . 16
19 3D orientation diagram (anaglyphic) . 16
20 Ellipse-line intersection . 17
21 Hyperbola-line intersection . 18
22 Hyperbolic curvature as a function of z . 19
23 Hyperbolic curvature and its derivative as a function of z . 20
24 Hyperbolic overlapping curves . 21
25 Hyperbolic intersection . 22
26 IPython work session . 25

1 Overview

About a decade ago I wrote the first version of OpticalRayTracer1 (hereafter ORT), intending it as a simple optical
design tool for educational and entertainment purposes. Since that beginning I have received and responded to many
requests for additions and corrections, with the result that recent ORT versions have become more versatile and
better at imitating nature.

1.1 Ray Tracing
Using a method known as Ray Tracing2, ORT traces light rays through optical media such as lenses and mirrors,
modeling the physics of light as it does.

A note of explanation – In computer technology, ray tracing has two distinct meanings. In computer graphics,
ray tracing produces very realistic images by processing each display picture element (pixel3) as a separate task –
tracing the path of that location out into a virtual world where it interacts with various objects. In physics, ray
tracing refers to the practice of tracing rays through physical elements and media with the aim of analyzing their
interactions and behavior. ORT traces rays in the latter sense.

1.2 Snell’s Law
One of ORT’s primary activities is to apply Snell’s Law4, a cornerstone of modern optical design. Snell’s Law
describes the behavior of light as it moves through different media, each of which possesses an Index of Refraction5

(hereafter IOR), a number that reveals the speed of light in that medium. For example, an IOR of 1.5, typical of
glass, tells us that light travels only about 66% (1

1.5) as fast in that medium as it does in a vacuum (with an IOR of
1).

For those of my readers familiar with Relativity theory, who understand that the speed of light is a constant in
all frames, I should add that the IOR tells us, not that light’s speed has changed, but that light takes a longer path
at its normal speed, with delays along the way.

2

1.2.1 Scalar form

Here is the classic form of Snell’s law:

n1 sin θ1 = n2 sin θ2 (1.1)
Where θ1 and θ2 are light wavefront angles and n1 and n2 are indices of refraction. A practical restatement of

equation (1.1), meant to acquire an angle result, is:

θ2 = sin−1 n1 sin θ1

n2
(1.2)

1.2.2 Vector form

In order to be indifferent to the relative angle between a light ray and a lens, as well as from which side of the lens
the light approaches, ORT uses a vector form to compute Snell’s Law outcomes – it looks like this6:

r = n1

n2
(1.3)

c1 = ±N̂ · Î (1.4)

c2 =
√

1− r2(1− c2
1) (1.5)

T̂ = rÎ + (rc1 − c2)N̂ (1.6)

• Î = incident light ray vector

• N̂ = lens surface normal vector

• T̂ = refracted light ray vector
A word of explanation: In equation (1.4) the value c1 is the dot product of unit vectors N̂ and Î, but if the

result value is negative, N̂ is negated and equation (1.4) is performed again. In this case, the negated value for N̂ is
retained for use in equation (1.6). The reason for this algebraic sign management is so that light rays can approach
a lens from either side and be treated the same.

1.3 Index of Refraction

Figure 1: Index of Refraction

3

Figure 1 may provide an intuitive sense of why a slowing of light waves causes the light wavefront to change direction,
and why a lens curved surface can change the direction of light (a direction change called refraction7). Note that
the change of direction shown in Figure 1 is reversible – a light wavefront traveling in the opposite direction (from
bottom to top in Figure 1) would experience the opposite deflection. Expressed another way, when moving into a
medium with a higher IOR (and a slower light speed), light is deflected toward the normal line (the vertical dotted
line in Figure 1), but when moving into a lower IOR, such as from glass to air, light is deflected away from the
normal line (imagine reversing the arrows in Figure 1).

It’s also important to understand that a light wavefront approaching perpendicular to the surface of a medium
(that is, in the direction of the normal line of Figure 1) experiences no deflection.

Figure 2: Snell’s Law refraction example

In Figure 2 we see a lens (green outline) in ORT, with a light beam that is deflected twice, once while entering
the lens, once while exiting. Even though the transitions involve opposite applications of Snell’s Law (the values
for refractive indices n1 and n2 are reversed), and because of the shape of the lens and the direction of the light
beam, the beam is refracted in the same direction while entering and leaving the glass. The reason is provided by
the normal (dotted) lines shown in Figure 2 – when entering, because of the higher IOR of glass and for reasons
given above, the light beam is refracted toward the normal line, which rotates it clockwise (from 0◦ to 4◦), and while
leaving, because of the lower IOR of air, the beam is refracted away from the normal line, which causes it to be
rotated further clockwise (from 4◦ to 12◦).

1.4 Total Internal Reflection
In computing refraction outcomes, there are cases where a combination of entry angle and IOR produce an impossible
Snell’s Law equation outcome, one that (in nature) causes the light beam to reflect internally instead of exiting the
medium. This is called total internal reflection8. For a given IOR, one may easily compute the critical angle past
which internal reflection must take place:

θcrit = sin−1 n1

n2
(1.7)

Here’s an example critical angle calculation using the indices of refraction from our earlier example:

θcrit = sin−1 1
1.5 = 41.8◦ (1.8)

This means that, at an interface between media having the indicated IOR differential, light beam angles greater
than 41.8◦ will reflect internally. As it happens, when a critical angle example is submitted to ORT, it ”does the
right thing”:

4

Figure 3: Total internal reflection

Figure 3 shows ORT generating two beams, one that exits the lens just below the critical angle, while the other,
just above the critical angle (because of its path through the lens), instead reflects internally, just as in nature.

People may not realize that total internal reflection can be an everyday occurrence. For example, while swimming
underwater, one cannot see through the water’s surface at angles past:

θcrit = sin−1 1
1.333 = 48.6◦ (1.9)

This means a common underwater effect, known to all swimmers and divers, is explained by Snell’s Law and
optical refraction.

2 Basic Ray Tracing

2.1 Core algorithm
In this section we will provide a detailed explanation of ORT’s method for tracing light rays. The procedure can be
outlined like this:

1. Build a virtual world of lenses and mirrors, through which rays of light will pass.

2. Create a ray with an origination point and angle, that is, a polar vector with a defined origin.

3. In the direction given by the angle, make a list of all objects the ray would intersect and the details of the
intersections.

4. Sort the resulting list of intersections, placing the nearest objects at the head of the list.

5. Select the nearest surface of the nearest object having a distance greater than zero (thus allowing the ray to
move away from a given surface).

6. Test the surface to determine if it’s part of a lens or mirror, or just part of a sphere that creates an optical
object (details below).

7. If the surface is part of a lens or mirror, compute the relevant optical effects and use the result to change the
ray’s angle.

8. Unless the surface is a terminating plane, repeat this process from item (3) above.

The above process is repeated using as many light beams as desired to analyze the optical system.

5

2.2 Circle-line intersection
During ORT’s tracing activity, most object detection applies a geometric equation set and method called circle-line
intersection9. Here is the procedure for locating intersections between a light ray and circles representing lenses:

• In the following equations, a line of infinite extent is defined by Cartesian10 locations x1, y1 and x2, y2, both of
which lie on the line of interest.

• The specific values of x1, y1 and x2, y2 are less important than the fact that they lie on the line of interest,
defined by the initial ray position and angle as explained above.

• In computer optical modeling, lenses are normally defined by two overlapping circles:

Figure 4: Lens defined by overlapping circles

• The modeled lens is defined by the area of overlap between the two circles, the dark area at the center of Figure
4.

• Each of the circles to be tested is defined by a location in Cartesian x, y coordinates, and a radius.

• The circles are each evaluated for intersections with the light ray:

– We begin by defining some preliminary equations:

dx = x2 − x1 (2.1)
dy = y2 − y1 (2.2)
dr = d2

x + d2
y (2.3)

D =
∣∣∣∣ x1 x2
y1 y2

∣∣∣∣ = x1y2 − x2y1 (2.4)

∆ = r2dr −D2 (2.5)

In the above equations, as before, x1, y1 and x2, y2 describe a line for our ray of light, and r defines the
radius of a tested circle.

– With the above preliminaries, we define equations by which to locate points of intersection:

xa = Ddy + sgn(dy)dx

√
r2dr −D2

dr
(2.6)

xb = Ddy − sgn(dy)dx

√
r2dr −D2

dr
(2.7)

ya = −Ddx + |dy|
√
r2dr −D2

dr
(2.8)

yb = −Ddx − |dy|
√
r2dr −D2

dr
(2.9)

6

– Non-standard function sgn(x) is defined as:

sgn(x) =
{
−1 if x < 0
1 if x >= 0 (2.10)

• The first test is to evaluate the ∆ equation (2.5) listed above – if ∆ >= 0, the ray doesn’t cross within the
target circle and can be skipped.

• if ∆ < 0, then the line’s two points of intersection with the circle are defined by xa, xb and ya, yb (equations
(2.6) - (2.9)), and the next evaluation step can be taken.

Here’s a diagram of a typical field of lenses and circles, and a light ray for which we need intersection information:

Figure 5: Ray intersection diagram

1. As explained earlier, a ray is generated and a list of intersecting targets is assembled using equations (2.1) -
(2.9).

2. In the initial analysis, those circles having no intersections with the ray are eliminated by ∆ (equation (2.5)).

3. The resulting intersection list is sorted by distance, so the nearest intersections are evaluated first.

4. In Figure 5, the detected points of intersection are marked with red dots.

5. Normally the only objects of interest are lenses, defined as overlapping circles, such as the blue lens at the
center of Figure 5 and the larger green lens at the upper right.

6. Let’s assume for this example that our ray’s point of origin is x1, y1 at the lower left (point x2, y2 only serves
to define the ray’s angle or slope).

7. Moving toward the upper right, the first potential target is a red circle with two intersections. But this circle
doesn’t overlap with another circle, therefore it’s not a lens, so it’s bypassed.

8. The next surface is part of a blue circle that represents the left part of a lens, but this specific surface is not
within the shared area of the lens, so it’s also bypassed.

9. The next intersection is the near side of a lens defined by two overlapping blue circles. Therefore the search
stops, Snell’s Law is applied to the surface (as shown in Figure 1 above), a new angle is computed, and the
entire search process repeats from step (1) above using this new origin point and angle.

7

For each lens surface, in other words when both entering and exiting a lens, the Snell’s Law analysis procedure
described above is applied and, because this changes the ray’s direction, the search process begins anew with the
present surface as the ray’s point of origin.

For a given ray of light, the above process is repeated until there are no more targets in the field of view or a
terminating plane is encountered. And the above-described process is repeated for as many light rays as the user
needs to properly evaluate the optical configuration under test.

2.3 Mirror Reflection
ORT uses mirror reflection in two circumstances – directly, when an object is specified as reflecting, and in the case
of total internal reflection, when a light beam exiting an optical medium exceeds the critical angle (discussed above),
as a result of which the beam is reflected back into the medium.

Figure 6: Mirror reflection

2.3.1 Scalar form

Using the variable names from Figure 6 and assuming units of radians, the equation for reflection is:

φ = π − 2(θ − δ) + θ (2.11)

2.3.2 Vector form

To be indifferent to relative angles and to accommodate a vector-based approach, ORT uses a vector form for mirror
reflection, using terminology from the above-described Snell’s Law vector-form equation:

R̂ = Î − 2(Î · N̂)N̂ (2.12)

• Î = incident light ray vector

• N̂ = lens/mirror surface normal vector

• R̂ = reflected light ray vector

Mirror reflection follows these rules11:

• The three angles in equations (2.11) and (2.12) all lie in the same plane.

8

• The angle of reflection and the angle of incidence bear the same magnitude relationship to the surface normal.

• The angle of reflection and the angle of incidence lie on opposite sides of the surface normal.

2.4 Distance from point to line
This surprisingly complex procedure is used to detect the nearest line segment when the user clicks the graphic
display for information about a ray tracing line. Unlike other geometric procedures used by ORT, this one is meant
for line segments, finite-length lines defined by Cartesian position pairs x1, y1 - x2, y2.

Figure 7: Point-line proximity calculation

Referring to Figure 7, the red point is the location x, y for which the closest line is sought. For each candidate
line segment defined by x1, y1 - x2, y2, the following equations provide the point of closest proximity px, py:

px = (x1 − x2)y + x2y1 − x1y2

y1 − y2
(2.13)

py = (x− x2)y1 − (x− x1)y2

x1 − x2
(2.14)

Again referring to Figure 7, the purple line at the upper left yields a point of closest approach, but this result is
for a line of infinite extent, not a line segment, and that line segment isn’t actually adjacent to the test position. To
guard against this outcome, after a point of closest proximity is computed, an additional test is performed to assure
that the line segment x1, y1 - x2, y2 is adjacent to the test position x, y:

adjacent =
{
x1 ≤ x ∧ x ≤ x2 ∨ x2 ≤ x ∧ x ≤ x1 if x1 6= x2
y1 ≤ y ∧ y ≤ y2 ∨ y2 ≤ y ∧ y ≤ y1 otherwise (2.15)

Line segments that pass the above tests are placed in an array. At the end of the evaluation the array is sorted
by distance and the closest line is accepted as the user’s target.

3 Advanced Topics

9

3.1 Dispersion computation
ORT knows how to compute spectral dispersion12, a property of many optical materials in which the index of
refraction depends on wavelength.

3.1.1 Abbe number

In dispersion calculations, an Abbe number13 is acquired through laboratory studies of material dispersion. The
Abbe number is calculated in different ways, here is one:

Vd = nD − 1
nF − nC

(3.1)

• Vd: Abbe number

• Spectral lines:

– nD: Fraunhofer D14, Sodium, 589.3 nm
– nF : Fraunhofer F, Hydrogen β, 486.1 nm
– nC : Fraunhofer C, Hydrogen α, 656.3 nm

The Abbe number quantifies differences in Index of Refraction (IOR) for different wavelengths.

3.1.2 Sellmeier equation

To produce an effective IOR for a given material, one applies an equation based on empirically derived constants. One
example is the Sellmeier equation15, which bypasses the Abbe number scheme and derives its results from laboratory
measurements:

n2(λ) = 1 + B1λ
2

λ2 − C1
+ B2λ

2

λ2 − C2
+ B3λ

2

λ2 − C3
(3.2)

The Sellmeier equation can be more concisely expressed this way:

n2(λ) = 1 +
3∑

i=1

Biλ
2

λ2 − Ci
(3.3)

• n: Refractive index

• λ: Wavelength in micrometers

• B1,2,3, C1,2,3: Empirically derived coefficients for each material of interest

3.1.3 ORT/Sellmeier comparison

In ORT I use a much simpler (and less accurate) equation to produce a graphic representation of dispersion:

n′ = n+ (p− λ)c)
a p λ2 (3.4)

• λ: Wavelength in nm

• n: Material index of refraction

• n′: Dispersion-adjusted index of refraction at λ

• a: Abbe number for material

• p: Wavelength pivot, set to 589.3 nm

• c: An empirical constant equal to 5× 105

10

Because ORT’s dispersion function is meant only to represent dispersion in a general way, and because it’s expected
to function without knowledge of material properties apart from IOR and Abbe number, the above equation produces
satisfactory results. Here’s an example:

Figure 8: Dispersion equation comparison

Figure 8 shows an outcome based on measurements of the properties of Schott BK7 glass16 and published Sellmeier
coefficients for two of its traces (showing excellent agreement between prediction and measurement), and just the
BK7 Abbe number and IOR17 for the ORT result.

3.2 Hyperbolic Lenses
Even though it’s based on a simple premise, in terms of theoretical complexity the hyperbolic lens model is by far
the most complex part of ORT. The complexity doesn’t arise because dealing with hyperbolic curves is innately
complex, because that’s not so. It arises because to model a hyperbolic lens, ORT must join two hyperbolic curves
in a distinctly unnatural way, then find points of intersection between the modeled lens and a beam of light.

3.2.1 Advantages of hyperbolic lenses

Hyperbolic lenses are remarkable elements that overcome many of the drawbacks of spherical lenses. A short focal
length spherical lens (i.e. an ordinary lens, a lens based on the intersection of two imaginary spheres) suffers from
spherical aberration18:

Figure 9: Spherical aberration

11

By comparison, a carefully configured hyperbolic lens of the same overall shape, material and design, a lens that
differs only in the curvature of its surfaces, produces this result when modeled in ORT:

Figure 10: Optimized hyperbolic lens

3.2.2 Parabolic curve option

When presented with a large numeric value such as 1× 107, the ORT hyperbolic curve generator creates an approxi-
mate parabolic curve. This is a side effect of the mathematical method used to generate a range of hyperbolic curves,
and may be useful in designing telescope mirrors as one example. Here’s an ORT image showing an approximate
parabolic curve:

Figure 11: Parabolic mirror

Interestingly, hyperbolic curves find useful application in lenses, not mirrors, and parabolic curves have the
opposite application. More recent ORT versions support an exact parabolic curve model, which in most cases differs
academically from the above example, except when designing telescope mirrors.

12

3.2.3 Conic sections

Before describing how one models spherical, hyperbolic and parabolic optical elements, we need to digress into an
explanation of conic sections and how they relate to these curves.

A hyperbola is one of three classes of conic section19. As it turns out, it’s productive to think of circles and
ellipses (with eccentricity20ε < 1), parabolas (ε = 1), and hyperbolas (ε > 1) as representing open or closed curves
of intersection between a plane and a cone in three dimensions. Here’s an example – an ellipse as a conic section:

Figure 12: Elliptical conic section

Here’s a commonly seen kind of elliptic curve:

Figure 13: Circular conic section

Remember that a circle is an ellipse with an eccentricity of zero (ε = 0). Ellipses have eccentricities between zero
and one, parabolas have an eccentricity of precisely one, and hyperbolas have eccentricities greater than one. Here’s
a parabolic conic section:

13

Figure 14: Parabolic conic section

And a hyperbola:

Figure 15: Hyperbolic conic section, z = .5

Here’s an image for those who prefer a true three-dimensional view, and who happen to have a pair of anaglyphic21

(red-blue) glasses lying about:

14

Figure 16: Hyperbolic conic section (anaglyph), z = .5

Ellipses are closed curves, while parabolas and hyperbolas are open curves – they extend to infinity without
closing. Interestingly, these terms are used to describe planetary orbits, which, depending on their kinetic and
potential energy, are classed as ellipses, parabolas or hyperbolas. An ellipse is a stable planetary orbit, a parabola is
the path taken by a body possessing exactly escape velocity (its orbital path never closes, but its velocity declines
and becomes zero at an infinite distance), and a hyperbola is the path taken by a body with greater than escape
velocity.

I ask my readers to imagine what would happen if the intersecting plane were to be moved toward the apex of
the cones. It turns out that the resulting curve is still hyperbolic, but its shape becomes more acute, and finally, at
z = 0, it becomes triangular:

Figure 17: Hyperbolic conic section, z = 0

Figure 17 shows that, by changing the distance between the plane and the apex of the cones, one can control the
shape of the hyperbolic curve. This point becomes important as we move into a description of hyperbolic modeling,
so let’s take a moment to orient ourselves – the intersecting plane’s motion is in the third or Z dimension:

15

Figure 18: 3D orientation diagram

Here’s the same image for those with anaglyphic glasses:

Figure 19: 3D orientation diagram (anaglyphic)

In the next section, the names of the dimensions shown in Figures 18 and 19 will be used regularly, so remember
that X is the left-right dimension, Y is the up-down dimension, and Z is the third dimension, which can be thought
of as an increase or decrease in radial distance.

3.2.4 Modeling challenge

ORT models hyperbolic lenses in such a way that the lenses are easy to explain and characterize, but this external
simplicity conceals some internal complexity. Here are the goals set out for the hyperbolic modeling task:

• To base a hyperbolic lens model on the simplest mathematics.

• To be able to describe the resulting lenses with a minimum of mathematical complexity, so that they might
actually be built.

• To solve a number of conflicting issues, among which are finding points of intersection between lines and
hyperbolic curves (not difficult), after the curves have been translated in such a way that they model a solid
lens, one with specific user-controlled properties (not easy).

• To model a lens whose dimensions (height and width) can be defined independently of the chosen hyperbolic
curvature. Not easy at all.

16

3.2.5 Ellipse-line intersection

In a preliminary step, we write equations able to find points of intersection between an ellipse and a line22. The first
equation describes an ellipse in terms of Cartesian23 coordinates x, y and the ellipse’s semiaxes a, b:

x2

a2 + y2

b2 = 1 (3.5)

The next equation describes an intersecting line:

y = y0

x0
x (3.6)

For equations (3.5) and (3.6):

• x: A horizontal position in Cartesian coordinates

• y: A vertical position in Cartesian coordinates

• a: The length of the ellipse’s horizontal semiaxis

• b: The length of the ellipse’s vertical semiaxis

• x0: The X coordinate of a point on the intersecting line

• y0: The Y coordinate of a point on the intersecting line

To clarify, the intersecting line is defined as passing through (0, 0) and (x0, y0).
If the above equations are solved simultaneously and for both x and y, they produce equations for two points of

intersection (a total of four resulting values, two for x and two for y):

x = ± abx0√
b2x2

0 + a2y2
0

(3.7)

y = ± aby0√
b2x2

0 + a2y2
0

(3.8)

Here’s an example outcome that uses equations (3.7) and (3.8) to compute points of intersection with the argu-
ments a = 3, b = 2, x0 = 5, y0 = 1:

Figure 20: Ellipse-line intersection

17

The points of intersection (the two roots of the quadratic equations that define the ellipse) are marked with red
dots. Notice about Figure 20 that the ellipse’s width is equal to 2a and its height is equal to 2b, the meaning of
”semiaxis” in this context. This will be important to remember later on.

3.2.6 Hyperbolic-line intersection

In the next step, we rewrite equation (3.5) to define a hyperbola instead of an ellipse. The new equation:

x2

a2 −
y2

b2 = 1 (3.9)

Notice about the new equation that it’s identical to equation (3.5) except that the terms are subtracted from
each other. Here are the derived equations when prior equations (3.9) and (3.6) are (as before) solved simultaneously
and for both x and y:

x = ±

√
1

b2x2
0 − a2y2

0
abx0 (3.10)

y = ± aby0√
bx0 + ay0

√
bx0 − ay0

(3.11)

Here’s an example result, using the same values as in the previous example:

Figure 21: Hyperbola-line intersection

In Figure 21, notice that the vertices of the hyperbolic curves (i.e. their closest approach to the origin) are located
at ±a.

3.2.7 Z coordinate

First and perhaps most important, the value entered into the ORT ”Hyperbolic Curvature” entry field is a bisecting
plane’s coordinate in the Z dimension, through a unit hyperbola (a hyperbola with a slope of 1). This arrangement
is meant to simplify the technical description of a hyperbolic lens modeled by ORT.

In the previous section we showed that hyperbolic curvature is controlled by the intersecting plane’s position in
the Z dimension. With this in mind, and with the intent to write a more general equation, let’s rewrite equation
(3.5), eliminate the scaling variables a, b and add a variable that specifies a position in the Z dimension:

x2 − y2 = z (3.12)

18

In this simplified equation, z specifies the location of the intersecting plane in the Z dimension (see Figure 18).
We can use this equation to explore the relationship between plane position and curvature:

Figure 22: Hyperbolic curvature as a function of z

I emphasize this point because, to successfully model hyperbolic lenses with different amounts of curvature, we
need to be able to control the position of the intersecting plane in the Z dimension, and the z variable in equation
(3.12) provides this ability.

For a practical solution we need functions able to describe the profile of a hyperbolic lens, and we need a function
that provides the first derivative24 of that profile, or rate of change, used to compute surface angles, a requirement
for Snell’s Law calculations.

Here are example functions derived from equation (3.12) that produce hyperbolic profiles and first derivatives of
those profiles:

• Profile:
x = ±

√
y2 + z (3.13)

• First derivative (surface curvature):
x = ± y√

y2 + z
(3.14)

Here are example outcomes for these functions:

19

Figure 23: Hyperbolic curvature and its derivative as a function of z

It can be seen that, as the Z coordinate moves away from zero, the surface profile becomes less extreme and
the first derivative declines in proportion. An ideal hyperbolic lens equation would provide a way to control this
curvature without disrupting any other properties such as lens size.

3.2.8 Hyperbolic model

The ultimate goal is a mathematical treatment that will allow a modeled lens that can be scaled and positioned like
a spherical lens, but that has hyperbolic curvature:

20

Figure 24: Hyperbolic overlapping curves

Having achieved the result shown in Figure 24, we should be able to compute points of intersection between lines
and the modeled lens, just as with a spherical lens:

21

Figure 25: Hyperbolic intersection

Notice about figures 24 and 25 that the modeled lens has normalized dimensions – its width and height are equal
to ± 1 unit. This means the basic model can be scaled to any required size because, independent of its curvature, the
model has uniform and consistent dimensions. Achieving this result requires substantial modification of the earlier
hyperbolic equations, as well as some algorithmic treatment of intermediate results.

Taking as our starting point the simplified equation (3.12) responsible for the above curvature examples, we add
variables that define the x, y origin point, to allow lines to cross through points other than (0, 0):

(x+ px)2 − (y + py)2 = z (3.15)
Finally, we add one more variable to control the curve’s scale independent of its curvature:

(x+ px)2 − (m(y + py))2 = z (3.16)
To summarize these values:

• x, y: These are the unknown result values for a line-hyperbola intersection calculation.

• px, py: This specifies a position so that lines may intersect the lens at positions other than the origin.

• m: This value controls the overall scale of the lens, independent of the other values.

• z: This moves the intersecting plane in the Z axis, providing control over the hyperbola’s curvature as shown
in the earlier figures.

We now define an equation that describes an intersecting line:

sx = y (3.17)
In equation (3.17) the s value represents the slope of a line whose points of intersection are being sought. For a

given line defined by x1, y1 − x2, y2:

s = y2 − y1

x2 − x1
(3.18)

22

In practice, for a given line whose points of intersection are sought and that is defined by x1, y1 − x2, y2, one
coordinate pair is assigned to px, py of equation (3.16) and the s value computed by equation (3.18) is applied to
equation (3.17). This defines the line with respect to the hyperbolic profiles of the modeled lens.

At this point we’ve prepared the basic equations for a modeled hyperbola whose position and shape we control.
As before, to model our lens we need equations for x-axis profile and first derivative of profile, based on solutions to
equation (3.16):

• Profile:
x = −px ±

√
m2p2

y + 2m2pyy +m2y2 + z (3.19)

• First derivative (surface curvature):

x = ± m2py +m2y√
m2p2

y + 2m2pyy +m2y2 + z
(3.20)

Finally, to compute points of intersection between a line and the hyperbolic curve, a simultaneous solution for
equations (3.16) and (3.17) is acquired for both x and y, but unlike the earlier examples and because of the number
of terms in the new equations, the derivations are a bit more complex:

x = 1
s (m2s2 − 1)

(
−m2pys

2 + pxs±
√
s2
(
m2p2

xs
2 − 2m2pxpys+m2p2

y −m2s2z + z
))

(3.21)

y = 1
m2s2 − 1

(
−m2pys

2 + pxs±
√
s2
(
m2p2

xs
2 − 2m2pxpys+m2p2

y −m2s2z + z
))

(3.22)

The m value in the above equations, responsible for normalizing the curve’s scale, is derived from a given z
argument in this way:

m = −
√

2
√
z + 1 (3.23)

Having acquired points of intersection from equations (3.21) and (3.22), we can move on to a more conventional
optical computation such as a Snell’s Law result.

4 Conclusion

4.1 Role of computers in optics
In a modest way ORT shows the power of modern, computer-aided, applied mathematics. In reading the literature
of the optical field while preparing this article, I became impressed by the fact that, until recently, practical optics
has relied on either no mathematical results or very crude results. Programs like ORT can greatly simplify optical
design and prototyping, as well as increase the amount of information available about a given design or configuration.

This isn’t to say that practical lab testing has no role, but the threshold is higher in modern times – many kinds
of preliminary experiments can (and should) be conducted using a computer instead of an optical bench, for both
economic and practical reasons. And to a greater degree than in the past, modern optical manufacturing is controlled
by computers, which increases the value of accurate mathematical models.

Put simply, these changes mean workers in the field of optics need to learn about computers or be replaced by
those who have done so.

4.2 Tools
This article was composed on Texmaker25, an excellent, free, LaTeX editor.

The mathematical results used in ORT derive from many sources. In the project’s early years Mathematica26

was the primary source for equation derivation, but over time its expense, and the requirement for frequent and
costly updates to keep the program working, led me to explore alternatives. More recently I’ve begun using Sage27,
the iPython28 environment, and the Python library SymPy29 to produce results and derivations. One advantage
of these newer tools is that they’re all free. Another is that over time, very skilled and enthusiastic people create
improvements and fix bugs.

23

Most of the graphic images were created in the Sage mathematical environment (discussed below), but the conic
section images were created using Pov-Ray30, a ray tracing program of the other kind (the kind meant to create
pretty pictures).

4.2.1 SymPy

I’ve been recenty exploring SymPy’s symbolic math abilities – it has occurred to me that I should be able to write a
single Python script to derive all required equations as well as format results for both the ORT Java source (as Java
source code) and for articles like this one (as LaTeX text). The advantage is that I can generate all these results in
a Python script that accepts a set of preliminary equations I specify (and that change over time) and automatically
produce all the required derivations and text forms.

Here’s an example that shows how powerful and accessible SymPy is. In this example SymPy takes the simple
preliminary equations required for hyperbolic lens analysis (equations (3.16) and (3.17)) and produces all the forms
required by ORT and by articles like this.

from sympy import *
var(’x y p_x p_y z m s’)
exp1 = (x+p_x)**2 - (m*(y+p_y))**2 - z
exp2 = s*x-y
qa = solve((exp1,exp2),x,y)
qa = map(simplify,qa)
print("x = " + latex(qa[0][0]))

x = 1
s (m2s2 − 1)

(
−m2pys

2 + pxs−
√
s2
(
m2p2

xs
2 − 2m2pxpys+m2p2

y −m2s2z + z
))

(4.1)

That’s one of the four forms of the line-hyperbolic intersection equation, the ”heavy lifting”. Now for the profile
form:

qb = solve(exp1,x)
qb = map(simplify,qb)
print("x = " + latex(qb[0]))

x = −px −
√
m2p2

y + 2m2pyy +m2y2 + z (4.2)

Now the derivative form, used for surface normal angle calculations:

qc = diff(qb[0],y)
qc = simplify(qc)
print("x’ = " + latex(qc))

x′ = − m2 (py + y)√
m2p2

y + 2m2pyy +m2y2 + z
(4.3)

Simple, efficient, repeatable. I can create Java forms and LaTeX forms with a few keystrokes. To make a change,
I need only edit a few lines and run the script again.

Deriving equation (3.23) was a bit more complicated – it’s the equation that normalizes the lens size for any Z
coordinate value. To produce this result, I need to assign a SymPy ”solve()” result to a function, then set particular
values for that function, then solve for those particular arguments. The idea is that the m value should produce a
lens semidiameter of 1.0 regardless of the z argument that represents the Z dimension coordinate. Therefore to find
the required m value for any z value, I needed to derive a special form of the profile equation. Here’s how I presented
the problem to SymPy, using the results acquired above:

pe = lambdify((y,z,p_x,p_y,m), qb[1],’sympy’)
qd = solve(pe(0,z,0,0,m)-pe(1,z,0,0,m)-1,m)[2]
print("m = " + latex(qd))
pf = lambdify(z, qd,’sympy’)
z = 10
print(N(pf(z)))

24

m = −
√

2
√
z + 1 (4.4)

2.70639156818387

An earlier version of ORT acquired the m value by iteration, using a slow, inefficient binary search. Eventually
I decided to look for a closed-form solution, but this required me to figure out how to express the problem in a way
comprehensible to SymPy’s equation solver. Simply put, I required an m value that produced an exact differential
of one unit between the edge and center of a lens with any curvature, any z value.

When I first saw the result (m = −
√

2
√
z + 1) I thought the solver had failed and was emitting bogus math

(which sometimes happens) – I had rarely seen one square root nested within another square root before. But a
few quick tests comparing results with the iterative method (see example result above) proved that the odd-looking
equation was exactly right, indeed because it produced immediate numerical results of 16-place accuracy, it was able
to draw lenses more precisely than the prior iterative method. The result was that I was able to abandon the old
method and see ORT run faster and more reliably.

As time passes, SymPy is becoming more powerful and able to solve more kinds of equations, consequently if I
need an equation generator that’s reliable and repeatable, if I need a result that doesn’t change until I want it to
(such as the equation set that defines ORT), it’s definitely the tool of choice.

4.2.2 IPython

The IPython environment is more interactive and immediate than SymPy (even though it relies on SymPy internally),
so for rapid experimental work it excels. In its current incarnation it’s hosted in a browser. Here’s what it looks like
in action:

Figure 26: IPython work session

The difference between IPython and SymPy is that SymPy is a symbolic library accessible through Python
scripting, therefore it’s the right choice for a script that produces a given kind of result perpetually, but IPython is
an interactive environment intended for the kind of experimentation that might lead to a more permanent solution.

4.2.3 Sage

Sage is a more powerful mathematical environment than either SymPy or IPython, one that manages certain symbolic
issues more cleanly than SymPy or IPython do, but it’s very large and for structural reasons pretty much limited to
operating under Linux. Ordinarily I would be happy about that –I’m a longstanding advocate of Linux – but in this
case the program’s Linux base represents a limitation because it prevents wider adoption and possibly fresh ideas.

Earlier in the Sage project there were a few efforts to create a native Windows install package, but as Sage grew
larger these efforts gradually became unworkable. Now that Sage’s typical installed size exceeds 4 gigabytes, now

25

that it won’t run under Windows without a virtual host environment and a rather complex installation procedure,
it’s no longer an end-user program.

Notwithstanding these issues, many of this article’s graphic images were created in Sage. Sage plotting is easy
and flexible compared to its alternatives, and Sage is immediate in much the way IPython is.

4.2.4 Pov-Ray

I can’t end a list of development tools without mentioning Pov-Ray. I used Pov-Ray to create the three-dimensional
conic section graphics, including the anaglyphic images. Pov-Ray has been around for a long time, and one would
think by now it would be paired with a reliable, open-source, cross-platform, undead modeling tool. There’s a nice
tool called KPovModeler31, unfortunately no one is maintaining it, which means over time it becomes increasingly
hard to compile it and get it running.

References
1OpticalRayTracer – A virtual lens/mirror design workshop.
2Ray Tracing (physics) – A physics analysis method that examines the paths of rays through various media.
3Pixel – picture element, part of a computer display representing a single screen location.
4Snell’s Law – a cornerstone of optical science and design.
5Index of Refraction – a convenient measure of the speed of light in a given material.
6Derivation of Refraction Formulas – author Paul S. Heckbert
7Refraction – a change in the direction of a light wavefront, often by means of a lens.
8Total Internal Reflection – a case where Snell’s Law dictates that a light beam will be reflected internally rather than exiting the

medium.
9Circle-line intersection – a mathematical method for locating points of intersection between a circle and line.

10Cartesian Coordinates – orthogonal coordinates that define points on a plane or in higher dimensions.
11Laws of Reflection – a description of the physical circumstances of planar reflection.
12Dispersion (Optics) – a property of many optical materials in which the index of refraction is wavelength-dependent.
13Abbe number – a numeric value proportional to a material’s spectral dispersion.
14Fraunhofer Lines – spectral lines measured in the early days of observational astronomy, now often used as physical constants in

optical work.
15Sellmeier equation – an equation that relates Abbe numbers to optical dispersion.
16SChot Optical Glass – Page 12 for BK7 glass properties
17Schott BK7 Refractive Index info – Source for BK7’s Abbe number and other properties.
18Sperical Aberration – A persistent and unavoidable defect in spherical lenses.
19Conic section – A geometric interpretation of certain mathematical notions.
20Ecentricity (Mathematics) – a defining property of all conic sections.
21Anaglyph 3D – A method for producing stereoscopic images by means of color filters.
22Ellipse-Line Intersection – Equations able to find points of intersection between an ellipse and a line
23Cartesian coordinate system – A system of spatial orientation using orthogonal coordinates.
24Derivative (mathematics) – a rate of change in a function, and a cornerstone of Calculus.
25Texmaker – An excellent, free, LaTeX editor.
26Mathematica – An excellent, but expensive, mathematical environment.
27Sage (mathematics) – A free open-source mathematics software system.
28iPython – A Python-based interactive computing environment.
29SymPy – A Python library for symbolic mathematics.
30Pov-Ray – A powerful raytracing tool of the other kind (for generating pretty images).
31KPovModeler – A nice modeling tool for Pov-Ray, now unfortunately abandoned.

26

http://arachnoid.com/OpticalRayTracer/
http://en.wikipedia.org/wiki/Ray_tracing_%28physics%29
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Snell's_law
http://en.wikipedia.org/wiki/Refractive_index
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.4048
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Snell's_law#Total_internal_reflection_and_critical_angle
http://mathworld.wolfram.com/Circle-LineIntersection.html
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Reflection_(physics)#Laws_of_reflection
http://en.wikipedia.org/wiki/Dispersion_(optics)
http://en.wikipedia.org/wiki/Abbe_number
http://en.wikipedia.org/wiki/Fraunhofer_lines
http://en.wikipedia.org/wiki/Sellmeier_equation
http://www.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_all_us.pdf
http://refractiveindex.info/legacy/?group=SCHOTT&material=N-BK7
http://en.wikipedia.org/wiki/Spherical_aberration
http://en.wikipedia.org/wiki/Conic_section
http://en.wikipedia.org/wiki/Eccentricity_(mathematics)
http://en.wikipedia.org/wiki/Anaglyph_3D
http://mathworld.wolfram.com/Ellipse-LineIntersection.html
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Derivative
http://www.xm1math.net/texmaker/
http://www.wolfram.com/mathematica/
http://www.sagemath.org/
http://ipython.org/
http://sympy.org/
http://www.povray.org/
http://en.wikipedia.org/wiki/KPovModeler

	Overview
	Ray Tracing
	Snell's Law
	Scalar form
	Vector form

	Index of Refraction
	Total Internal Reflection

	Basic Ray Tracing
	Core algorithm
	Circle-line intersection
	Mirror Reflection
	Scalar form
	Vector form

	Distance from point to line

	Advanced Topics
	Dispersion computation
	Abbe number
	Sellmeier equation
	ORT/Sellmeier comparison

	Hyperbolic Lenses
	Advantages of hyperbolic lenses
	Parabolic curve option
	Conic sections
	Modeling challenge
	Ellipse-line intersection
	Hyperbolic-line intersection
	Z coordinate
	Hyperbolic model

	Conclusion
	Role of computers in optics
	Tools
	SymPy
	IPython
	Sage
	Pov-Ray

